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Abstract. We introduce a new formulation of the standard completion time variance (CTV)
problem with n jobs and one machine, in which the job sequence and the processing times of

the jobs are all decision variables. The processing time of job i ði ¼ 1; . . . ; nÞ can be com-
pressed by an amount within ½li; ui�, which however will incur a compression cost. The
compression cost is a general convex non-decreasing function of the amount of the job

processing time compressed. The objective is to minimize a weighted combination of the
completion time variance and the total compression cost. We show that, under an agreeable
condition on the bounds of the processing time compressions, a pseudo-polynomial algo-
rithm can be derived to find an optimal solution for the problem. Based on the

pseudo-polynomial time algorithm, two heuristic algorithms H1 and H2 are proposed for
the general problem. The relative errors of both heuristic algorithms are guaranteed to be no
more than d, where d is a measure of deviation from the agreeable condition. While H1 can

find an optimal solution for the agreeable problem, H2 is dominant for solving the general
problem. We also derive a tight lower bound for the optimal solution of the general
problem. The performance of H2 is evaluated by complete enumeration for small n, and by

comparison with this tight lower bound for large n. Computational results (with n up to 80)
are reported, which show that the heuristic algorithm H2 in general can efficiently yield near
optimal solutions, when n is large.
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1. Introduction

The single-machine completion time variance (CTV) scheduling problem is
well-known to be NP-hard in the ordinary sense. Its objective is to deter-
mine a job schedule so as to minimize the variance of job completion
times. Originally, this problem was formulated by Merten and Muller [8]
in 1972, motivated by the need to provide uniform responses to users’
requests for retrieving computer data files. The model was later demon-
strated to be applicable to any situation where it is desirable to provide a
uniform treatment to all the jobs. Applications of the model may be found
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in both services and manufacturing operations. For a review of the previ-
ous work on this problem, see De et al. [5] and Cai [2].
In this paper, we are concerned with an extension of the standard CTV

problem to the situations where the processing time of a job can be com-
pressed, if needed, at an extra cost. The compression of a job processing
time in order to meet a certain due date occurs frequently in service and
manufacturing environments. An optimal solution is to be sought which,
on the one hand, yields the lowest possible completion time variance and,
on the other hand, does not incur too much compression cost. Specifically,
we formulate the problem as a model of determining simultaneously an
optimal job sequence, as well as a set of optimal processing times, so that
the weighted combination of the completion time variance and the total
compression cost is minimized.
This is a new formulation of the CTV problem involving controllable

processing times, although other models involving compressible processing
times have been extensively investigated in the literature. In general, pre-
vious research usually considers linear scheduling costs. For example,
Nowicki and Zdrzalka [11] addressed a problem of minimizing the maxi-
mum completion time plus the total compression cost. Panwalkar and
Rajagopalan [13] investigated a problem with an objective function com-
prising earliness cost, tardiness cost and linear compression cost. Simi-
larly, Alidaee and Ahmadian [1] considered the minimization of two
types of scheduling cost: (A) the total compression cost plus the total
flow time, and (B) the total compression cost plus total weighted earliness
and weighted tardiness. Recently, Cheng et al., in [3] and [4], studied
compressible processing times problems with convex compression costs.
However, no research has considered a quadratic earliness/tardiness pen-
alty function with a convex compression cost. For a comprehensive
review of scheduling problems involving compressible processing times,
see Nowicki and Zdrzalka [12].
The classical CTV problem, where the processing times are given, can be

regarded as a special case of our model, since the processing times are in
fact fixed when the lower bound and upper bound of the processing time
of each job are equal. Since the classical CTV problem has already been
proved to be NP-hard [7], our new problem is also NP-hard and it is thus
unlikely that an algorithm that can find its optimal solution in polynomial
time exists. In this paper, we show that, under a certain agreeable condition
(which can be easily justified), a dynamic programming algorithm can be
designed that can find an optimal solution for the problem in
pseudo-polynomial time, bounded above by OðnUðU� Lþ 1ÞðU� Lþ nÞÞ,
where U ¼

Pn
i¼1 ui;L ¼

Pn
i¼1 li; and ui and li are the upper bound and the

lower bound of the processing time of job i, respectively. Based on the
pseudo-polynomial time algorithm, two heuristic algorithms H1 and H2
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are proposed for the general problem, where the agreeable condition may
not be satisfied. The relative errors of both heuristic algorithms are guaran-
teed to be no more than d, where d is a measure of deviation from the
agreeable condition. While H1 can find an optimal solution faster than H2
for the agreeable problem, H2 is dominant for solving the general problem.
We also derive a tight lower bound for the optimal solution of the general
problem. The performance of H2 is evaluated by complete enumeration for
small n, and by comparison with this tight lower bound for large n. Com-
putational results are reported, which show that the heuristic algorithm H2
in general can efficiently yield near optimal solutions, and demonstrate a
trend of diminishing relative errors when n grows.
The remainder of the paper is organized as follows. Section 2 gives a

detailed formulation of the problem. Section 3 derives some basic
results. A tight lower bound for the solution of the general problem will
be given in Section 4. Section 5 develops the pseudo-polynomial algo-
rithm, and analyzes its time complexity. In Section 6, the heuristic algo-
rithms and their error analyses will be presented. Computational results
are reported in Section 7. Finally, some concluding remarks are given in
Section 8.

2. Problem Formulation

We consider the problem of scheduling n independent and simultaneously
available jobs on a single machine, which is assumed to be continuously
available and can process only one job at a time. Job splitting and pre-
emption are not allowed. Each job i ði ¼ 1; 2; . . . ; nÞ requires a positive
integer processing time pi, which can be chosen from an interval ½li; ui�,
where li and ui are positive integers and are called the lower bound and
upper bound of the processing time of job i, respectively. As each pro-
cessing time may be compressed from its upper bound, the amount of
time compressed for job i is thus ui � pi. The compression of job i will
incur a compression cost fðui � piÞ, where fðxÞ is any convex non-decreas-
ing function of xP0: Let

P=the set of all permutations of the integers from 1 to n,
k ¼ ðkð1Þ; . . . ; k ðnÞÞ 2 P, a sequence that specifies job kðiÞ is processed in

position i; i ¼ 1; . . . ; n;
Ci ¼ the completion time of job i,

C ¼ 1
n

Pn

i¼1
Ci, the mean completion time,

l ¼ ðl1 . . . lnÞt, the vector of lower bounds,
u ¼ ðu1 . . . unÞt, the vector of upper bounds.
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The problem is to find an optimal solution so as to minimize a weighted
linear combination of the completion time variance and the total
compression cost. Specifically, we seek to determine a sequence k and a
processing time vector p ¼ ðp1 . . . pnÞt so as to minimize

CTVCðk;pÞ ¼ x0
1

n

Xn

i¼1
ðCi � CÞ2

" #

þ x
Xn

i¼1
fðui � piÞ;

subject to k 2 P and lOpOu; where x0 > 0 is the weight associated with
the completion time variance, and xP0 is the weight associated with the
total compression cost. Without loss of generality, we assume that x0 ¼ n:
For convenience, we write: CTVðk; pÞ ¼

Pn
i¼1ðCi � CÞ2 and CCðpÞ ¼

x
Pn

i¼1 fðui � piÞ. Hence,

CTVCðk;pÞ ¼
Xn

i¼1
ðCi � CÞ2 þ x

Xn

i¼1
fðui � piÞ ¼ CTVðk;pÞ þ CCðpÞ:

It should be noted that CCðpÞ is independent of the job sequence k.

3. Definitions and Basic Results

The following two definitions will be used in this paper. The first one
comes from the literature.

DEFINITION 1. A sequence is said to be V-shaped with respect to the pro-
cessing times if the jobs preceding the shortest job (the job with the short-
est processing time) are in the longest processing time (LPT) order whereas
the jobs succeeding the shortest job are in the shortest processing time
(SPT) order.

DEFINITION 2. A sequence is said to be V-shaped with respect to the job
indices if the jobs preceding job 1 are sequenced in decreasing order of the
job indices whereas the jobs succeeding job 1 are sequenced in increasing
order of the job indices.

For example, if p1 ¼ 4; p2 ¼ 3; p3 ¼ 2; then the sequence (1,3,2) is V-
shaped with respect to the processing times, but not V-shaped with respect
to the job indices. On the other hand, the sequence (3,1,2) is V-shaped with
respect to the job indices, but not V-shaped with respect to the processing
times.
It is clear that if p1O p2 � � �O pn; then any V-shaped sequence with

respect to the processing times is also V-shaped with respect to the job
indices, and vice versa.
The following lemma will be used for deriving Theorem 2.
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LEMMA 1. If g is a convex function in an interval I, then, for any x; y 2 I
with xO y, we have gðxþ zÞ þ gðy� zÞO gðxÞ þ gðyÞ for all z 2 ½0; y� x�:

Proof. Let z ¼ ðy� xÞa; where a 2 ½0; 1�: Then, xþ z ¼ ð1� aÞxþ ay and
y� z ¼ axþ ð1� aÞy: Since g is convex, we have

gðxþ zÞOð1� aÞgðxÞ þ agðyÞ;
and

gðy� zÞOagðxÞ þ ð1� aÞgðyÞ:

Adding these two inequalities together will yield the result. (

We now examine the V-shaped property of an optimal sequence for the
considered problem. For the classical CTV problem with fixed processing
times, it has been known (cf. Eilon and Chowdhury [6]) that an optimal
sequence must be V-shaped with respect to the processing times. Thus, if
the optimal processing times of the n jobs for our problem are given, the
corresponding sequence that minimizes the CTV part of our problem will
be V-shaped with respect to the processing times. Since the CC part is
independent of the job sequence, the sequence that minimizes the overall
CTVC is clearly V-shaped with respect to the processing times. Therefore,
we have the following theorem.

THEOREM 1. If the n optimal processing times are given, then there exists an
optimal sequence which is V-shaped with respect to the optimal processing times.

However, one should note that such a V-shaped sequence is entirely
dependent upon the values of the optimal processing times. The difficulty
is that, before the optimal processing times are found, we actually do not
know which jobs will have the shortest optimal processing time, the second
shortest optimal processing time, and so on. Theorem 2 below gives an
answer to this question under the following agreeable condition.

Agreeable condition : l1Ol2 � � �Oln and u1Ou2O � � �Oun:

To justify this agreeable condition, we consider the following example.
Suppose that a company can hire from 1 to m workers to work for each of
the n jobs. That is, for two different jobs, the company may hire two differ-
ent numbers of workers. For simplicity, the speeds of the m workers are
assumed to be the same. Let ui be the time taken for one worker to com-
plete job i. We can re-label the job indices such that u1 O u2O � � � O un.
Clearly, the minimum and maximum processing times to complete job i
are, respectively, corresponding to hiring m and 1 worker(s) for job i.
Thus, the lower bound and upper bound of the processing time for job i
are li ¼ ui=m and ui, respectively. It follows that l1Ol2O � � �O ln.
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THEOREM 2. Under the agreeable condition, there exists an optimal pro-
cessing time vector p� ¼ ðp�1 � � � p�nÞ

t such that p�1 O p�2 O � � � O p�n:

Proof. Let p� ¼ ðp�1 . . . p�nÞ
t be an optimal processing time vector and k�

be the corresponding optimal sequence. Suppose that p�i > p�j for some
i < j. Then, under the agreeable condition, we have

liO lj Op�j < p�i Oui O uj;

which implies that p�i 2 ½lj; uj� and p�j 2 ½l1; ui�. Let job i and job j be sched-
uled in position i0 and position j0 under k�, namely, i ¼ k�ði0Þ and j ¼ k�ðj0Þ.
Consider the processing time vector p} ¼ ðp}1 . . . p}Þt and the sequence
k} 2 P such that, for k ¼ 1; 2; . . . ; n;

p}k ¼
p�k; k 6¼ i; j
p�j ; k ¼ i
p�i ; k ¼ j

8
<

:

k}k ¼
k�ðkÞ; k 6¼ i0; j0

k�ðj0Þ; k ¼ i0;
k�ði0Þ; k ¼ j0

8
<

:

which means that p} is obtained from p� by interchanging the processing
times of job i and job j, and k} is obtained from k� by interchanging the posi-
tions of job i and job j. It can easily be seen that CTVðk�;p�Þ ¼ CTVðk}; p}Þ
However, for the CC part, since fðxÞ is convex non-decreasing, one has

CCðp�Þ�CCðp}Þ¼x fðui�p�i Þþfðuj�p�j Þ
h i

� fðui�p}i Þþfðuj�p
}
j Þ

h in o

¼x fðui�p�i Þþfðuj�p�j Þ�fðui�p�j Þ�fðuj�p�i Þ
h i

P0:

The last inequality follows from Lemma 1 by putting g ¼ f; I ¼ ½0;1Þ;
x ¼ ui � p�i ; y ¼ uj � p�j and z ¼ p�i � p�j . Hence, CTVCðk�; p�ÞP
CTVCðk};p}Þ. Since CTVCðk�;p�Þ is optimal, we have CTVCðk�;p�Þ ¼
CTVCðk};p}Þ.This means that if p�i > p�j and i < j, then by interchanging
the processing times and the job positions of job i and job j, we can obtain
a CTVC value that is equal to the optimum. Thus, by interchanging the
processing times and the job positions of job 1 and the job with the short-
est processing time, and then interchanging the processing times and the
job positions of job 2 and the job with the second shortest processing time,
and so on, we will eventually obtain a set of n optimal processing times for
the n jobs in non-decreasing order. (

Armed with Theorems 1 and 2, we can obtain Theorem 3.
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THEOREM 3. Under the agreeable condition, there exists an optimal
sequence that is V-shaped with respect to the job indices.

Proof. Theorem 2 shows that, under the agreeable condition, there exist
n optimal processing times such that p�1 O p�2 O � � � O p�n. Since there exists
an optimal sequence that is V-shaped with respect to these optimal process-
ing times (Theorem 1), this sequence must also be V-shaped with respect to
the job indices. (

4. A Tight Lower Bound

In this section, we will derive a tight lower bound for the optimal objective
value of the general problem, where the agreeable condition may, or may
not, be satisfied. Solutions obtained by the heuristic algorithm H2, to be
proposed in Section 6, will be compared with this lower bound. This will
result in an upper bound for the relative error of the heuristic algorithm. If
the upper bound diminishes as n grows, then the relative error of the heu-
ristic algorithm must also diminish as n grows. The following theorem pro-
vides such a tight lower bound. Here, we denote l½i� as the i-th smallest
number in the set fl1; . . . ; lng. Therefore, l½1�O � � �Ol½n�. Similarly, we denote
uðiÞ as the i-th smallest number in the set fu1; . . . ; ung, and we have
uð1ÞO � � �OuðnÞ. Let bl ¼ l½1� . . . l½n�

� �t
and bu ¼ uð1Þ . . . uðnÞ

� �t
. For convenience,

we denote the problem of minimizing CTVCðp;pÞ, subject to
p 2 P; lOpOu, by Pl, and the problem of minimizing CTVCðp;pÞ, subject
to p 2 P;blOpObu, by P2.

THEOREM 4. For any l1; . . . ; ln and u1; . . . ; un;

min
p2P;blOpObu

CTVCðp; pÞO min
p2P;lOpOu

CTVCðp; pÞ:

Proof. Without loss of generality, we may assume that u1O � � �Oun: It is
because we can re-label the jobs so that the lower bounds are in non-
decreasing order. We have bu ¼ u. The remaining proof is similar to the
proof of Theorem 2. Suppose that li > lj for some i < j. We consider the
vector l} ¼ l}1 . . . l}n

� �t
such that, for k ¼ 1; 2; . . . ; n,

l}k ¼
lk; k 6¼ i; j
lj; k ¼ i
li; k ¼ j

8
<

:
;

which means that l} is obtained from l by interchanging the lower bounds
of job i and job j. Let p� ¼ ðp�1 . . . p�nÞ

t be an optimal processing time vector
and k� be the corresponding optimal sequence for Pl. Clearly, lOp�Ou.
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Case 1: p�i Op�j
By noting that

lj<li O p�i O p�j ;

we get l}i ¼ lj<p�i and l}j ¼ li<p�j . This implies that l}Op�Ou. Therefore,

min
x2P;l}OpOu

CTVCðp; pÞOCTVCðk�; p�Þ ¼ min
p2P;lOpOu

CTVCðp; pÞ:

Case 2: p�i > p�j
Let job i and job j be scheduled in position i0 and position j0 under k�,

namely, i ¼ k�ði0Þ and j ¼ k�ðj0Þ. Consider the processing time vector
p} ¼ ðp}1 . . . p}n Þ

t and the sequence k} 2 P such that, for k ¼ 1; 2; . . . ; n,

p}k ¼
p�k; k 6¼ i; j
p�j ; k ¼ i
p�i ; k ¼ j

8
<

:

and

k}ðkÞ ¼
k�ðkÞ; k 6¼ i0; j0

k�ðj0Þ; k ¼ i0

k�ði0Þ; k ¼ j0

8
<

:
;

which means that p} is obtained from p� by interchanging the processing
times of job i and job j, and k} is obtained from k� by interchanging the
positions of job i and job j. It can easily be seen that
CTVðk�; p�Þ ¼ CTVðk}; p}Þ. However, for the CC part, since fðxÞ is con-
vex non-decreasing, one has

CCðp�Þ�CCðp}Þ¼x fðui�p�i Þþf uj�p�j
� �h i

� f ui�p}i
� �

þf uj�p}j
� �h in o

¼x fðui�p�i Þþfðuj�p�j Þ�fðui�p�j Þ�fðuj�p�i Þ
h i

P0:

The last inequality follows from Lemma 1 by putting g ¼ f; I ¼ ½0;1Þ; x ¼
ui � p�i ; y ¼ uj � p�j and z ¼ p�i � p�j . Hence, CTVCðk�;p�ÞPCTVCðk}; p}Þ.
By noting that

p�j < p�i OuiOuj;

we have l}i ¼ ljOp}i ¼ p�j < ui and l}j ¼ liOp}j ¼ p�i Ouj. This implies that
l}Op}Ou. Therefore,

min
p2P;l}OpOu

CTVCðp;pÞOCTVCðk};p}Þ

OCTVCðk�; p�Þ ¼ min
p2P;lOpOu

CTVCðp;pÞ:
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This means that if li > lj for some i < j, then by interchanging the lower
bounds of job i and job j, we get a new CTVC problem with an optimal
objective value less than or equal to that of the original one. This opera-
tion of interchanging lower bounds is performed iteratively. Thus, by inter-
changing the lower bounds of job 1 and the job having the smallest lower
bound, and then interchanging the lower bounds of job 2 and the job hav-
ing the second smallest lower bound, and so on, we will eventually reach
problem P2. (

Theorem 4 shows that the optimal objective value of P2 is a lower
bound for the optimal objective value of P1. This lower bound is tight
because, for each n, it is possible that the lower bounds and upper bounds
of the jobs in P1 may satisfy the agreeable condition, and thus P1 is identi-
cal to P2. This concept of tight lower bound has been used in the litera-
ture, see [10] for example.
In the next section, we will design an algorithm that can find an optimal

solution for any problem instance satisfying the agreeable condition. As P2
satisfies the agreeable condition, its optimal objective value can be found
using this algorithm. In addition, this algorithm will be incorporated into
the heuristic algorithms in Section 6 to find an approximate solution for
the general problem.

5. A Solution Procedure for the Agreeable Problem

Theorem 3 shows that, under the agreeable condition, there exists an opti-
mal sequence that is V-shaped with respect to the job indices. This suggests
a dynamic programming approach to construct a pseudo-polynomial algo-
rithm, which can obtain an optimal solution if the agreeable condition is
satisfied. The design of the algorithm is an extension of the design in [2].
To begin with, we introduce the following auxiliary problem.

5.1. AN AUXILIARY PROBLEM

Let Ciðk;pÞ; i ¼ 1; . . . ; n, be the completion times corresponding to k 2 P
and p 2 P ¼ fðp1 . . . pnÞt : pi 2 ½li; ui�; i ¼ 1; . . . ; ng; and �Cðk; pÞ ¼ 1

n

Pn
i¼1

Ciðk;pÞ be the mean completion time. To derive the algorithm, we intro-
duce the following auxiliary problem:

min
d2D;k2P;pi2½li;ui�;i¼1;...;n

cðk; d; pÞ ¼
Xn

j¼1
ðCjðk;pÞ � dÞ2 þ x

Xn

j¼1
fðuj � pjÞ

" #

;

ð1Þ

where
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D ¼ 1; 1þ 1

n
; 1þ 2

n
; . . . ;U� 1

n
;U

� �

is defined as the feasible set of d and U ¼
Pn

i¼1 ui is the sum of all the
upper bounds. It is easy to see that

cðk; d; pÞ ¼ cðk; �Cðk; pÞ;pÞ þ nð �Cðk;pÞ � dÞ2 ð2Þ

for any d 2 D; k 2 P and p 2 P:
The next theorem links our problem with the auxiliary problem.

THEOREM 5. (i) If k�, p� ¼ ðp�1 . . . p�nÞ
t and d� are optimal to the problem

(1), then d� ¼ �Cðk�; p�Þ and k�; p� are optimal to CTVCðk;pÞ.
(ii) If k� and p� ¼ ðp�1 . . . p�nÞ

t are optimal to CTVCðk; pÞ, then k�;p� and
d� ¼ �Cðk�;p�Þ are optimal to the problem (1).

Proof. (i) From the definition of k�, p�, d� and (2) for k ¼ k�; d ¼ d�;
p ¼ p�, we obtain cðk�; d�; p�ÞOcðk�; �Cðk�; p�Þ; p�Þ ¼ cðk�; d�; p�Þ�
nð �Cðk�;p�Þ � d�Þ2. Therefore, d� ¼ �Cðk�; p�Þ. Hence, for any k 2 P and any
p 2 P, we have

cðk�; �Cðk�; p�Þ;p�Þ ¼ cðk�; d�; p�ÞOcðk; �Cðk;pÞ; pÞ:

This means that k� and p� are optimal to CTVCðk; pÞ:
(ii) From the definition of k�;p� and (2), we obtain cðk�; �Cðk�;

p�Þ; p�ÞOcðk; �Cðk;pÞ; pÞ ¼ cðk; d; pÞ � nð �Cðk;pÞ � dÞ2O cðk; d;pÞ, for any
k 2 P; p 2 P and d 2 D. This shows that k�; p� and d� ¼ �Cðk�;p�Þ are opti-
mal to the problem (1). h

We are now ready to present the algorithm on the basis of Theorems 3
and 5.

5.2. DESIGN OF THE PSEUDO-POLYNOMIAL ALGORITHM

Let Vi be the set of all V-shaped sequences with respect to job indices, for
jobs 1; 2; . . . ; i. The following procedure will find an optimal solution for
the problem:

min
p2Vn;1�p�u

CTVCðp; pÞ:

The idea is that, for each d 2 D, find kðdÞ 2 Vn and pðdÞ 2 P such that
cðkðdÞ; d;pðdÞÞ � cðk; d;pÞ for all k 2 Vn and p 2 P. Then, find the mini-
mum of cðkðdÞ; d;pðdÞÞ for all d 2 D:
Suppose that a d 2 D is given. kðdÞ and pðdÞ are found iteratively using

dynamic programming as follows: Consider the partial scheduling for job 1,
job 2,. . ., job i. Since kðdÞ 2 Vn; job ðiþ 1Þ; . . . ; job n must not be scheduled
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among job 1, job 2, . . ., job i. Suppose that these i jobs start at time ri;
under a sequence ki 2 Vi; with processing time vector pi ¼ ðp1 . . . piÞt 2
Pi ¼ fðp1 . . . piÞt : pj 2 ½lj; uj�; j ¼ 1; . . . ; ig: Let Cjðri; ki;piÞ be the completion
time of job jðj ¼ 1; . . . ; iÞ under this setting. Define an auxiliary function

ciðki; d; ri; piÞ ¼
Xi

j¼1
ðCjðri; ki;piÞ � dÞ2 þ x

Xi

j¼1
fðuj � pjÞ;

which is the sum of two parts. The first part is the sum of squared devia-
tions of the completion times of job 1,. . ., job i from d starting at time ri
under the sequence ki 2 Vi. The second part is the compression cost when
the processing times are compressed from their upper bounds to pj’s,
j ¼ 1; . . . ; i: It should be clear that Cjðri; ki;piÞ ¼ Cjð0; ki; piÞ þ ri: Therefore,
ciðki; d; ri; piÞ depends only on ki; d� ri and pi: Let qi ¼ p1 þ � � � þ pi 2
½Li;Ui�; where Li ¼

Pi
j¼1 lj and Ui ¼

Pi
j¼1 uj: We also let ti ¼ d� ri: Since

d 2 D and ri must be an integer in ½0;Un �Ui�; ti must be an element of

Ti ¼ �Un þUi þ 1;�Un þUi þ 1þ 1

n
; . . . ;Un �

1

n
;Un

� �

:

For any given ti 2 Ti and qi 2 ½Li;Ui�; we define

biðti; qiÞ ¼ min
ki2Vi;pi2Qi

ciðki; d; ri;piÞ;

where Qi ¼ fðp1 . . . piÞt 2 Pi : p1 þ � � � þ pi ¼ qig: Since pi ¼ qi � p1 � � � �
�pi�1 2 ½qi �Ui�1; qi � Li�1� and pi 2 ½li; ui�; we have pi 2 ½x; y�; where x ¼
maxfqi �Ui�1; lig and y ¼ minfqi � Li�l; uig: It is not hard to see that, if
job i is scheduled in front of job 1,. . ., job ði� 1Þ, then

biðti; qiÞ ¼ min
pi¼x;xþ1;...;y

½bi�1ðti � pi; qi � piÞ þ ðpi � tiÞ2 þ xfðui � piÞ�:

On the other hand, if job i is scheduled after job 1,. . ., job ði� 1Þ, then

biðti; qiÞ ¼ min
pi¼x;xþ1;...;y

½bi�1ðti; qi � piÞ þ ðqi � tiÞ2 þ xfðui � piÞ�:

Note that job i cannot be scheduled in any other position because
kðdÞ 2 Vn: Let

b1iðti; qiÞ ¼ min
pi¼x;xþ1;...;y

½bi�1ðti � pi; qi � piÞ þ ðpi � tiÞ2 þ xfðui � piÞ�;

b2iðti; qiÞ ¼ min
pi¼x;xþ1...;y

½bi�1ðti; qi � piÞ þ ðqi � tiÞ2 þ xfðui � piÞ�
:

By the principle of optimality, we have

biðti; qiÞ ¼ minfb1iðti; qiÞ; b2iðti; qiÞg;
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for i ¼ 1; . . . ; n; subject to b0ðt0; q0Þ ¼ 0;8t0; q0:
Note that rn ¼ 0; tn ¼ d and qn 2 ½Ln;Un�: Therefore,

cðkðdÞ; d;pðdÞÞ ¼ min
qn2½Ln;Un�

bnðd; qnÞ:

Since Tn ¼ D; we can obtain the optimal d� by finding the minimum of
minqn2½Ln;Un� bnðtn; qnÞ for tn 2 Tn:
It should be noted that the pseudo-polynomial algorithm searches for

the best possible V-shaped sequence with respect to job indices. Therefore,
it will give an optimal solution for any problem instance that (after certain
re-labeling of indices) satisfies the agreeable condition.

5.3. TIME COMPLEXITY OF THE PSEUDO-POLYNOMIAL ALGORITHM

THEOREM 6. The time complexity of the pseduo-polynomial algorithm is
bounded above by

OðnUðU� Lþ 1ÞðU� Lþ nÞÞ:

Proof. Since jTij ¼ nð2U�Ui � 1Þ þ 1 � 2nU; jfLi; . . . ;Uigj ¼ Ui � Liþ
1 � U� Lþ 1 and jfmaxfqi �Ui�l; lig; . . . ;minfqi � Li�1; uiggj � jfli; . . . ;
uigj ¼ ui � li þ 1; it can easily be seen that the time complexity of the algo-
rithm is bounded above by

O
Xn

i¼1
ð2nUÞðU�Lþ1Þðui� liþ1Þ

 !

¼OðnUðU�Lþ1ÞðU�LþnÞÞ: (

COROLLARY 1. If there exists a constant c such that ui � li � c for all
i ¼ 1; . . . ; n; then the time complexity is bounded above by Oðn3UÞ:

Proof. It follows by noting that U� L � nc: (

Corollary 1 indicates that if the range of each processing time is
bounded by a constant, then the time complexity reduces to Oðn3UÞ:

COROLLARY 2. If there exists a constant C such that U� L � C; then the
time complexity is bounded above by Oðn2UÞ:

Proof. It follows directly from Theorem 6. (

Corollary 2 indicates that if the total variation of the processing times is
bounded, then the time complexity reduces to Oðn2UÞ: The classical CTV
problem is a special case of this situation, where U� L ¼ 0:
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6. Heuristic Algorithms for CTVC Problem

In this section, we aim at devising heuristic algorithms for the general
problem. In the first heuristic algorithm, we construct modified lower
bounds to make the problem agreeable.
Heuristic 1 (H1):
1. Sort the jobs so that the upper bounds are in non-decreasing order,

i.e., u1 � � � � � un:
2. Set ~l1 ¼ l1; ~li ¼ maxfli; ~li�lg; i ¼ 2; . . . ; n:
3. Use the pseduo-polynomial algorithm in Section 5 for the modified

lower bounds to find a solution.

It is clear that ~l1 � � � � � ~ln: Therefore, the problem with the modified lower
bounds satisfies the agreeable condition. Hence, Step 3 will give an optimal
solution for the modified problem. But the solution may not be optimal
for the original problem. We will provide an error analysis for H1 in the
following. The next lemma will be used in the analysis.

LEMMA 2. Let B ¼ ðbijÞ be an m�m square matrix, and x ¼ ðx1 . . . xmÞt;
y ¼ ðy1 � � � ymÞt and z ¼ ðz1 . . . zmÞt be three m� 1 column vectors, where all
bij; xi; yi and zi are positive real numbers. Then,

xtBy

ztBz
� max

i¼1;...;m

xi
zi

� �� �

max
i¼1;...;m

yi
zi

� �� �

:

Proof. Let k ¼ maxi¼1;...;m
xi
zi

� �

and l ¼ maxi¼1;...;m
yi
zi

� �

: Then, xi � kzi

and yi � lzi; for i ¼ 1; . . . ;m: Thus,

xtBy

ztBz
¼
P

i;j¼1;...;m bijxiyj
P

i;j¼1;...;m bijzizj
�

kl
P

i;j¼1;...;m bijzizj
P

i;j¼1;...;m bijzizj
¼ kl: (

We will analyze the relative error and obtain a bound for it. After Step 1
of H1, the n jobs have been sorted so that u1 � . . . � un: Let l ¼ ðl1 . . . lnÞt
and u ¼ ðu1 � � � unÞt. Note that the CTV part involves only square terms.
Therefore, it can be expressed as a quadratic form involving all pi and the
sequence. Let A ¼ ðaijÞ be the ðn� 1Þ � ðn� 1Þ symmetric matrix defined
in [9]. Accordingly,

aij ¼ iðn� jÞ; iOj,
jðn� iÞ; i > j.

�

Let p ¼ ðp1 � � � pnÞt and, for any sequence p, let pp ¼ ppð2Þ � � � ppðnÞ
� �t

. By [9],
the CTV part can be expressed as 1

n p
t
pApp: Therefore, the original problem

can be expressed as minimizing

CTVCðp;pÞ ¼ 1

n
ptpApp þ x

Xn

i¼1
fðui � piÞ;
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subject to p 2 P and l � p � u. We should note that ppð1Þ is not involved
in the quadratic form, which implies that for any optimal sequence p� we
can have (i) pp�ð1Þ � pp�ðiÞ; i ¼ 2; . . . ; n; and (ii) pp�ð1Þ ¼ up�ð1Þ: Let
~l ¼ ð~l1 . . . ~lnÞt: Suppose that

CTVCðp�; p�Þ ¼ min
p2P;~l�p�u

CTVCðp;pÞ

and

CTVCðp�; p�Þ ¼ min
p2P;l�p�u

CTVCðp;pÞ:

Since l � ~l, we have CTVCðp�; p�Þ � CTVCðp�; p�Þ: The relative error of
H1 is therefore

e ¼ CTVCðp�;p�Þ � CTVCðp�;p�Þ
CTVCðp�; p�Þ

Let di ¼ ~li � li; i ¼ 1; . . . ; n and r ¼ max d1
l1
; . . . ; dnln

n o
: Also, let d ¼ 2rþ r2:

We have the following result.
LEMMA 3.

e � d:

Proof. Let Di ¼ maxf0; ~li � p�i g; i ¼ 1; . . . ; n; andD ¼ ðD1 . . . DnÞt:We define
~p ¼ ð~p1 . . . ~pnÞ

t ¼ p� þ D: Note that 0 � Di � di; i ¼ 1; . . . ; n; and~l � ~p � u:
Using the non-decreasing property of f, we have fðui � ~pi þ DiÞ �
fðui � ~piÞ; i ¼ 1; . . . ; n: Therefore,

CTVCðp�; p�Þ ¼ 1

n
ðp�Þtp�Aðp�Þp� þ x

Xn

i¼1
fðui � p�i Þ

¼ 1

n
ð~p� DÞtp�Að~p� DÞp� þ x

Xn

i¼1
fðui � ~pi þ DiÞ

� 1

n
ð~p� DÞtp�Að~p� DÞp� þ x

Xn

i¼1
fðui � ~piÞ

¼ CTVCðp�; ~pÞ � hðp�;p�Þ
� CTVCðp�;p�Þ � hðp�; p�Þ;

where hðp�;p�Þ ¼ 2
nDt

p�Að~pÞp� � 1
nDt

p�ADp� ¼ 2
nDt

p�Ap
�
p� þ 1

nDt
p�ADp� : We

have,
1. CTVCðp�; p�Þ �CTVCðp�; p�Þ � hðp�; p�Þ ¼ 2

nDt
p�Ap

�
p� þ 1

nDt
p�ADp� ;

and
2. CTVCðp�;p�Þ¼ 1

nðp�Þ
t
p�Aðp�Þp� þx

Pn
i¼1 fðui�p�i Þ� 1

nðp�Þ
t
p�Aðp�Þp� > 0:
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Hence, by Lemma 2,

e ¼ CTVCðp�;p�Þ � CTVCðp�;p�Þ
CTVCðp�; p�Þ

� 2Dt
p�Ap

�
p�

ðp�Þtp�Aðp�Þp�
þ Dt

p�ADp�

ðp�Þtp�Aðp�Þp�

� 2max
i

Di

p�i

� �

þ max
i

Di

p�i

� �� �2

� 2max
i

Di

li

� �

þ max
i

Di

li

� �� �2

¼ d (

In the above analysis, we investigate the relative error when the
pseudo-polynomial algorithm of Section 5 is applied for the modified lower
bounds. However, we can apply the pseudo-polynomial algorithm for the
original lower bounds as follows. Let X be the set of all V-shaped
sequences with respect to the job indices, and CTVCðp0;p0Þ ¼
minp2X;l�p�u CTVCðp;pÞ: We have,

CTVCðp0; p0Þ ¼ min
p2X;l�p�u

CTVCðp;pÞ

� min
p2X;~l�p�u

CTVCðp;pÞ

¼ min
p2P;~l�p�u

CTVCðp;pÞ ¼ CTVCðp�;p�Þ

Let e1 be the relative error when we apply the pseudo-polynomial algo-
rithm for the orginal lower bounds, but only considering those sequences
in X. We get,

e1¼CTVCðp
0;p0Þ�CTVCðp�;p�Þ

CTVCðp�;p�Þ �CTVCðp
�;p�Þ�CTVCðp�;p�Þ
CTVCðp�;p�Þ ¼e�d:

Once we have obtained the solution ðp0; p0Þ, we can take an extra step to
improve it. We can treat p0 as a given vector of processing times, and then
find the best sequences p00 to minimize CTVCðp;p0Þ for all p 2 P; i.e.,

CTVCðp00;p0Þ ¼ min
p2P

CTVCðp;p0Þ:

Therefore

CTCðp00; p0Þ þ CCðp0Þ ¼ min
p2P
½CTVðp; p0Þ þ CCðp0Þ�

¼ min
p2P

CTVðp;p0Þ
	 


þ CCðp0Þ:
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Hence,

CTVðp00;p0Þ ¼ min
p2P

CTVðp;p0Þ:

Thus, to find p00 is just a classical CTV minimization problem when p0 is
considered as a given vector of processing times.
In the above discussion, we first sort the jobs so that the upper bounds

are in non-decreasing order, i.e., u1 � � � � � un: It seems a good idea to first
sort the jobs so that the lower bounds are in non-decreasing order, i.e.,
lj � � � � � ln; and then apply the steps in the above discussion. This suggests
a heuristic algorithm that does the two ways of calculation and then takes
the minimum between the two results. To summarize, the heuristic algo-
rithm is as follows.

Heuristic 2 (H2):

1. Sort the jobs so that the upper bounds are in non-decreasing order.
2. Use the pseudo-polynomial algorithm in Section 5 to find a solution.
3. Given the processing time vector obtained in Step 2, find an optimal

sequence w.r.t. this processing time vector by solving a CTV problem.
4. Record the result.
5. Sort the jobs so that the lower bounds are in non-decreasing order.
6. Repeat Steps 2–4.
7. Compare the two results and retain the better one.

Obviously, the time complexity of H2 is the same as that of H1, i.e.,
OðnUðU� Lþ 1ÞðU� Lþ nÞÞ: But, the relative error R of H2 is less than
or equal to that of H1, i.e., e. Therefore, R is also bounded above by d,
and H2 is chosen for solving the CTVC problem in general.

7. Computational Results

In the previous section, we have shown that R � d: However, d ¼ 2rþ r2 is
only a worst-case upper bound for R. Practically, the relative error may be
much smaller than this. In this section, the practical performance of the
heuristic algorithm H2 is evaluated by implementing this algorithm to solve
a number of testing problems.
The algorithm was coded in C and experiments were conducted to

evaluate the performance of the algorithm on a Linux-based PC with P4
2.4 GHz CPU and 1 GB physical memory. Problems of 5–80 jobs were
randomly generated. The bounds of the processing times were randomly
generated from [1,15]. The weights x are in the set f0:2; 0:4; 0:6; 0:8; 1;
5; 10g. A total of five instances were randomly generated for each problem
size. For each problem instance, the heuristic algorithm H2 was applied to
derive an approximated solution. Since the problem is NP-hard, the
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optimal solutions for large problem sizes are unlikely obtained in reason-
able time, so the quality of the approximated solution was evaluated in the
following ways:

	 For problems with n � 9, the solutions obtained by the heuristic algo-
rithm H2 were compared with the solutions obtained by complete enu-
meration and the compression cost function was taken to be fðxÞ ¼ x2:
	 For problems with n > 9, the solutions obtained by the heuristic algo-
rithm H2 were compared with the tight lower bound obtained by the
heuristic algorithm H1, and the compression cost function was a con-
vex non-decreasing function:

fðxÞ ¼ 8x; 0 � x � 4
2x2; x > 4

�

:

(Note: To show that the algorithm is applicable to any convex non-
decreasing function, two different cost functions were used in the experi-
ments.)
The results of the experiments are reported in the following. First, the

computational results for n � 9 are summarized in Table 1, in which �R is
the average relative error of the five solutions found by H2 for each n.
Also included in the table are the average CPU time required to solve the
problems using the heuristic algorithm H2 and complete enumeration. The
results show that the heuristic algorithm H2 gives near optimal solutions
when the weights x are small, although there is a trend that the average
relative error increases with the weight. On average, the algorithm took less
than 0.3 s to find the solution for n � 9; which is much more efficient than
complete enumeration.
Second, for bigger problems (i.e., n > 9), it becomes infeasible to find

the optimal solution by complete enumeration for evaluating the perfor-
mance of the heuristic algorithm H2. Instead, the tight lower bound
obtained by the heuristic algorithm H1 can be used to derive the relative

Table 1. Performance of the heuristic algorithm H2 for n 2 ½2; 9�

n
�R for x equal to Average CPU time (s)

0.2 0.4 0.6 0.8 1.0 5.0 10.0 H2 Enumeration

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 0.0

4 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.0 0.1

5 0.000 0.000 0.000 0.001 0.003 0.001 0.006 0.0 0.7

6 0.000 0.000 0.002 0.000 0.027 0.008 0.009 0.1 11.2

7 0.000 0.000 0.000 0.011 0.011 0.003 0.018 0.1 69.2

8 0.000 0.000 0.000 0.000 0.000 0.006 0.022 0.2 342.3

9 0.000 0.000 0.000 0.000 0.000 0.013 0.021 0.3 470.6
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error bound of the heuristic algorithm H2. Since the heuristic algorithm
H2 is a dynamic programming algorithm, the program must keep the
values of all state variables in order to back-track the processing times and
the sequence of the solution. Given an OðnUðU� Lþ 1ÞðU� Lþ nÞÞ com-
plexity, the computer memory for maintaining the essential data for
back-tracking would be quite taxing. With 1GB physical memory, the PC
could easily handle problems up to 50 jobs. The results for problems
ranging from 10 to 50 jobs are given in Table 2, in which �B is the average
relative error bound of the five solutions found by the heuristic algorithm
H2 for each n tested. The average CPU time to find the solution for each n
is also given in the table. Similar to the results for n � 9, the relative error
bound increases with the weight. Moreover, the relative error bound is
oscillating diminishingly as n grows, and the algorithm is reasonably
efficient as it can find the solution for n ¼ 50 in 378.6 s on average.
Third, to find the processing times and the sequence of the solution for

problems of more than 50 jobs, the PC must have more than 1GB physical
memory. However, calculating the relative error bound only needs the
objective values but not the processing times and the sequence of the solu-
tion. So, back-tracking could be avoided if we do not apply the CTV algo-
rithm to enhance the solution obtained by the pseudo-polynomial
algorithm (i.e., Step 3 of the heuristic algorithm H2). Although bypassing
Step 3 may affect the solution quality, it greatly reduces the computer
memory required for keeping the state information for computing the
objective values of the solution. Based in this simplification, we successfully
evaluated the performance of the heuristic algorithm H2 for problems from
60 to 80 jobs using the PC. The results obtained are tabulated in Table 3.
From the table, one can see that bypassing Step 3 only reduces the average
time slightly and it does not significantly affect the performance of the heu-
ristic algorithm H2 when n is large. In addition, the trends of the relative
error bound with respect to the weights and n persist and closely follow

Table 2. Perfomance of the heuristic algorithm H2 for n 2 ½10; 50�

n �R for x equal to Average

CPU time (s)

0.2 0.4 0.6 0.8 1.0 5.0 10.0

10 0.040 0.046 0.099 0.043 0.109 0.103 0.045 0.5

15 0.011 0.035 0.029 0.038 0.035 0.183 0.130 2.8

20 0.007 0.013 0.013 0.019 0.039 0.111 0.139 8.2

25 0.004 0.012 0.013 0.022 0.024 0.084 0.135 21.2

30 0.005 0.005 0.009 0.011 0.017 0.067 0.102 43.7

35 0.003 0.004 0.009 0.009 0.013 0.046 0.082 89.0

40 0.002 0.003 0.006 0.007 0.011 0.043 0.091 157.2

45 0.002 0.003 0.005 0.006 0.007 0.030 0.083 233.3

50 0.001 0.002 0.004 0.005 0.005 0.034 0.061 378.6
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those in Table 2. To help visualize the trend, the average relative error
bounds of H2 for problems from 10 to 80 jobs are plotted in Figure 1. The
figure clearly shows that the heuristic algorithm can give near optimal solu-
tions when n is large.

8. Concluding Remarks

We have studied a new CTV model in which the processing times of the jobs
can be compressed within certain intervals and the compression cost is for-
mulated as a general convex non-decreasing function of the amount of pro-
cessing time compressed. A pseudo-polynomial algorithm of time complexity
bounded above by OðnUðU� Lþ 1ÞðU� Lþ nÞÞ is derived to solve the
problem under an agreeable condition. Basing on the pseudo-polynomial
algorithm, we obtain two heuristic algorithm H1 and H2 for solving the gen-
eral problem. Although H1 can find an optimal solution for the agreeable
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Figure 1. Trend of average relative error bounds of the heuristic algorithm H2.

Table 3. Perfomance of the heuristic algorithm H2 (without solving the CTV problem) for n 2 ½60; 80�

n �B for x equal to Average CPU

time (s)

0.2 0.4 0.6 0.8 1.0 5.0 10.0

60 0.001 0.002 0.002 0.003 0.004 0.023 0.039 322.4

70 0.001 0.001 0.002 0.003 0.003 0.015 0.031 1299.2

80 0.001 0.001 0.002 0.002 0.002 0.015 0.025 1877.9
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problem, H2 is dominant for solving the general problem. The performance
of H2 has been evaluated by applying it to solve a number of randomly gen-
erated problem instances. The tight lower bound derived in Section 4 has
been used for evaluating the performance. The results show that H2 in gen-
eral can efficiently yield near optimal solutions, when n is large.
Topics for future research include: (a) relaxing the agreeable condition;

(b) proving that the problem is NP-hard in the strong sense or in the weak
sense; (c) generalizing the results to multi-machine problems; and (d) gener-
alizing the results to other earliness/tardiness scheduling problems.
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